数据标准体系建设的实践之路
The following article is from 数据治理周周谈 Author 昇晔
2018年银保监会颁布了《银行业金融机构数据治理指引》,为商业银行进行数据治理工作提供了方向,其中,数据标准体系的建立是关键,更是基础。然而,数据标准体系的建立不同于普通的软件系统开发,它有特定的方法和工程过程,并且需要持续维护和管理。
标准体系建立的两种路径
在实践中,商业银行数据标准体系的建立过程一般有两种路径。一种选择借助新一代信息系统建设的契机,统一规划、统一实施。通过构建数据标准体系,实施数据标准的强管控,让不符合数据标准规范的旧有数据随着系统下线逐渐消亡。这种方案的优点是通过顶层设计和企业级标准建模,减少了后续的数据供应链中进行数据转换和映射的成本,也使数据标准从源头到后端到应用都能够一致统一。但是,这样的数据标准化过程也必须有一个非常难得的实施机遇和窗口,某种程度上可遇不可求。
第二种是绝大部分商业银行在推进数据标准时都面临的场景,即存量系统、增量系统、重构系统混合,既要做好现有系统的对接,又要抓好新建系统的标准化,还要解决好数据质量问题在源头系统的改进,更要处理好数据赋能应用,正所谓“既要+又要+还要+更要”的四要模式。面对这样的“四要”难题,数据标准工作就必须进一步做到从实践出发,多方兼顾、有的放矢、稳步推进。
在实践工作中,关于如何在第二种场景中进行标准化工作,概括地说,可以用三个策略作为指导思想,从数据标准的三个维度、两个分类、一个平台着手,简称数据标准“3321”方案。
标准体系建立过程的三大策略
有了推进策略,具体如何建设数据标准体系,需要将业务部门、数据管理部门、开发实施部门之间的工作在数据标准的内容层面衔接起来,兼顾各部门的职责,发挥各部门的特点,既同心合力,又分工落实。从实战出发,数据标准的内容体系可以分为三个维度,分别是业务术语、数据标准、数据字典,由各个部门来分头处理。
有了工作策略,有了具体的数据标准体系,也实施了分类的数据标准规范,就需要有一个系统化、流程化的数据标准管理机制来持续管理和维护数据标准体系。这个平台,面向业务部门、数据管理部门、技术实施部门的不同层级的用户,将管理过程分模块进行细分,并进一步实现数据标准化服务功能。
联系我们
扫描二维码关注我们
微信:DaasCai
邮箱:ccjiu@163.com
QQ:2286075659
热门文章
我们的使命:普及数据管理知识、发展数据管理工程师行业、改变中国企业数据管理现状、提高企业数据资产管理能力、推动企业走进大数据时代。
我们的愿景:凝聚行业力量、打造数据工程师全链条平台,培养不同层级数据工程师人才、构建数据工程师生态圈。
我们的价值观:分享数据管理知识,持续提升数据管理和运营能力。
了解更多精彩内容
长按,识别二维码,关注我们吧!
数据工程师
微信号:sjgcs
构建数据工程师生态圈